Probing layer number and stacking order of few-layer graphene by Raman spectroscopy.

نویسندگان

  • Yufeng Hao
  • Yingying Wang
  • Lei Wang
  • Zhenhua Ni
  • Ziqian Wang
  • Rui Wang
  • Chee Keong Koo
  • Zexiang Shen
  • John T L Thong
چکیده

Graphene is a two-dimensional material defined as a planar honeycomb lattice of close-packed carbon atoms, where the electrons exhibit a linear dispersion near Dirac K points and behave as massless Dirac fermions. However, the valence and conduction bands in an AB stacked graphene bilayer split into two parabolic branches near the K point originating from the interaction of p electrons, and the electrons are hence described by massive Dirac fermions. Moreover, a graphene bilayer is a tunable-gap semiconductor under electric-field biasing. With a further increase in the number of layers along with AB stacking, the electronic structure reveals stepwise variations that eventually approach that of the three-dimensional counterpart. Considering the close relation between the electronic properties and layer number of few-layer graphene (FLG), the ability to accurately determine the layer number and correlating this with the electronic structure is a prerequisite in understanding the evolution of the electronic properties from twoto threedimensional graphitic materials. In addition to graphene layers with AB stacking, FLG with arbitrary stacking (Figure 1) is considered to possess distinct properties arising from its different crystalline structure and p electron interactions. Experimentally, it has been observed that the electroand magnetotransport properties for folded graphene sheets are different to thoseofAB stackedbilayers. Furthermore,FLG grown on SiC, Ni, and Ru also have non-AB stacking order. Therefore, elucidating the detailed character-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers.

Few-layer graphene has attracted tremendous attention owing to its exceptional electronic properties inherited from single-layer graphene and new features led by introducing extra freedoms such as interlayer stacking sequences or rotations. Effectively probing interlayer shear modes are critical for unravelling mechanical and electrical properties of few-layer graphene and further developing it...

متن کامل

Reversible Loss of Bernal Stacking during the Deformation of Few-Layer Graphene in Nanocomposites

The deformation of nanocomposites containing graphene flakes with different numbers of layers has been investigated with the use of Raman spectroscopy. It has been found that there is a shift of the 2D band to lower wavenumber and that the rate of band shift per unit strain tends to decrease as the number of graphene layers increases. It has been demonstrated that band broadening takes place du...

متن کامل

Studies of bilayer and trilayer graphene by Devin Artan

Graphene is a single 2-dimensional atomic layer of hexagonally packed carbon atoms. Graphene has a unique combination of thermal, mechanical, and electronic properties, making it a useful tool for learning new physics as well as a material with high potential for applications. Bilayer graphene (2LG) and trilayer graphene (3LG) share many of the interesting properties of its monolayer relative, ...

متن کامل

Excitation Energy Dependent Raman Signatures of ABA- and ABC-stacked Few-layer Graphene

The dependence of the Raman spectrum on the excitation energy has been investigated for ABA-and ABC- stacked few-layer graphene in order to establish the fingerprint of the stacking order and the number of layers, which affect the transport and optical properties of few-layer graphene. Five different excitation sources with energies of 1.96, 2.33, 2.41, 2.54 and 2.81 eV were used. The position ...

متن کامل

Imaging stacking order in few-layer graphene.

Few-layer graphene (FLG) has been predicted to exist in various crystallographic stacking sequences, which can strongly influence the material's electronic properties. We demonstrate an accurate and efficient method to characterize stacking order in FLG using the distinctive features of the Raman 2D-mode. Raman imaging allows us to visualize directly the spatial distribution of Bernal (ABA) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2010